Sound Controls Exercises
Adobe Flash C54/CS5 and ActionScript 3.0

These exercises show you how to use and control external MP3 files.

Part 1/ Introduction

1.

2.

Open the FLA file named sound_controls_1.fla.

Open the Actions panel. Read the instructions there and complete the exercises
suggested in the commented lines. Although those exercises are not essential to using
sound controls, it is hoped that you will understand the usefulness of the trace
function. The results of trace always appear in the Output panel.

Close the SWF window.

Open the Library and examine the objects there. You'll see three buttons and nothing
else. (Note that these buttons are already on the Stage and already have instance
names assigned to them.)

Outside Flash, open the folder named “audio” and note that there are three MP3 files
inside. The relationship of this folder and the SWF are very important, because the
ActionScript you are going to write will look for a folder with this name at this
location, relative to the SWF. (Move the folder, or rename it, and the AS will not
work!)

Part 2/ Simple Play and Stop buttons

1.

2.

Save As: Rename the FLA to sound_controls_2.fla
In the Actions panel, delete everything from Line 6 to the end.
Below the three listeners, write:

function stopSound(myEvent:MouseEvent):void ({
myChannel.stop();

}

function playSound(myEvent:MouseEvent):void ({
myChannel = mySound.play();

}

Look at the two functions and try to take them apart. That is, analyze what you see in
the functions.

Copyright © 2010, 2011 Mindy McAdams

a. Each function has its own unique name. One is named stopSound. The other is
named playSound.

b. Each function contains a command that should be familiar to you. One command
is stop(); — the other command is play();

c¢. Two things are not accounted for—they are new. One is myChannel and the
other is mySound. These are variable names.

Variables are created by you, the creator of the FLA. Each variable is assigned a
unique name as soon as it is created. Many programmers start their variable names
with either the or my to make it easy to recognize, later, which things in the script
are the variables. This is just a convention, not a requirement. However, it does
make it easy to avoid using ActionScript’s reserved words (such as event, or name,
or source) and thus causing errors.

See pages 208-211 in Adobe Flash CS5 Professional Classroom in a Book for more
information about variables.

5. Save and test the movie. You will see some errors:

COMPILER ERRORS - 6 REPORTED

Location | Description | Source
Scene 1, Layer 'actions', Frame 1, 1120: Access of undefined property myChannel. myChannel.stop();
Scene 1, Layer 'actions', Frame 1, 1120: Access of undefined property myChannel. myChannel = mySound.play();
Scene 1, Layer 'actions', Frame 1, 1120: Access of undefined property mySound. myChannel = mySound.play();
Scene 1, Layer 'actions', Frame 1, 1120: Access of undefined property runTracer. play_btn.addEventListener(MouseEvent.CLICK, runTracer);
Scene 1, Layer 'actions', Frame 1, 1120: Access of undefined property runTracer. stop_btn.addEventListener(MouseEvent.CLICK, runTracer);
Scene 1, Layer 'actions', Frame 1, 1120: Access of undefined property runTracer. pause_btn.addEventListener(MouseEvent.CLICK, runTracer);
€E - <>
Total ActionScript Errors: 6, Reported Errors: 6 Go to Source

Above: CS4 error outputs

Location | Description

Scene 1, Layer 'actions', Frame 1, Line 8 1120: Access of undefined property myChannel.
Scene 1, Layer 'actions’, Frame 1, Line 11 1120: Access of undefined property myChannel.
Scene 1, Layer 'actions', Frame 1, Line 11 1120: Access of undefined property mySound.
Scene 1, Layer 'actions', Frame 1, Line 3 1120: Access of undefined property runTracer.
Scene 1, Layer 'actions’, Frame 1, Line 4 1120: Access of undefined property runTracer.
Scene 1, Layer 'actions’, Frame 1, Line 5 1120: Access of undefined property runTracer.

@ 6 Error(s) !\, 0Warning(s)

Above: CS5 error outputs

The first three errors concern the missing variables. Flash even calls them “undefined”
to give you a big hint that you are trying to use a variable that does not exist.

Copyright © 2010, 2011 Mindy McAdams 2

The other three errors all refer to the function that you deleted. The listeners need the
function that they are scripted to look for (in this case, runTracer).

6. First you will fix the three function errors:

a. For the listener associated with the Play button, replace runTracer with the
name of your new function playSound.

b. For the listener associated with the Stop button, replace runTracer with the
name of your new function stopSound.

c. For the listener associated with the Pause button, simply comment it out for
now. That means: Type two slashes // at the very start of the line. The whole
line of ActionScript will become gray, meaning that Flash will not read it.

7. Second, to fix the variable errors, you will create two new variables named mySound
and myChannel. These will be used to control the external MP3 files.

This is how you declare new variables:

Variables are usually declared at the top of the script. Add these lines (ABOVE the
listeners):

var mySound:Sound;
var myChannel:SoundChannel;

The term that appears after the colon in both lines above (Sound and SoundChannel)
are the data types used by ActionScript. When you declare a variable, you also specify
its data type, as shown here. For a list of data types in AS3, see:
http://en.wikipedia.org/wiki/ActionScript#Data_types

8. Save and test the movie. Click the Play and Stop buttons. You will see some errors:

TypekError: Error #1009: Cannot access a property or method of a null object reference.
at sound_controls_2_fla::MainTimeline/playSound()

TypekError: Error #1009: Cannot access a property or method of a null object reference.
at sound_controls_2_fla::MainTimeline/stopSound()

A null object is an empty object, an object that contains nothing. A function can’t
operate on an empty object.

9. To fix the null object reference, you will instruct Flash to load one of the external MP3
files into the Sound object. Add these two lines BELOW the two variable declarations:

mySound = new Sound;
mySound.load(new URLRequest("audio/river.mp3"));

Copyright © 2010, 2011 Mindy McAdams 3

10.

11.

12.

13.

Copyright © 2010, 2011 Mindy McAdams

Note that you must have an MP3 file named river.mp3 inside the folder named audio
for this to work. Note also that the quotation marks are required.

If you get an error message like the one below, it means that either the FLA and SWF
are not in the same folder along with the folder named audio, or the file named
river.mp3 does not exist in that folder.

Error #2044: Unhandled IOErrorEvent:. text=
Error #2032: Stream Error.
at sound_controls_2_fla::MainTimeline/framel()

Save and test the movie. Click the Play button, then the Stop button, then the Play
button. You should hear the music playing, etc. However, there’s a problem. Click the
Play button, then click it again. Uh-oh.

To fix this sound overlap problem, you need to create a new variable. (This might seem
annoying, but it will be necessary for making the pause button work too, so it’s really
not a wasted effort.) Type this line below your other variable declarations:

var isPlaying:Boolean = false;

For more about Boolean variables:
http://help.adobe.com/en_US/FlashPlatform /reference/actionscript/3/Boolean.html

Edit your two functions to include the new true/false “flag” to tell Flash whether the
audio is playing or not:

function stopSound(myEvent:MouseEvent):void ({
myChannel.stop();
isPlaying = false;

}

function playSound(myEvent:MouseEvent):void {
myChannel = mySound.play();
isPlaying = true;

}

It would be nice if that were the end of it, but it’s not. Flash does not know what to do
with these true/false values unless you write instructions. You need to tell Flash what
to do if the audio is playing, or what to do if the audio is not playing, or both. We try to
think of the most minimalist way to tell Flash what it needs to know. So please
consider the possibilities:

a. Do you need to tell Flash any conditions for stopping the audio?

b. Do you need to tell Flash any conditions for playing the audio?

c. What does Flash need to know to prevent overlapping audio?
The answer to a. is no. The answer to b. is yes. The answer to c. is the key.

14. Ifthe audio is playing, do not make it play (again). But we need to write this
instruction in the function that makes it play. So you need to set up a condition that
permits the audio to play only if it is not playing already.

function playSound(myEvent:MouseEvent):void ({
if (!isPlaying) {
myChannel = mySound.play();
isPlaying true;

}
}
Using the exclamation point in this way (!isPlaying) is the same as saying “not”; the
Boolean way of saying “not equal to,” for example, is: !=

The four lines that begin with if and end with a curly brace are called an if statement.
By nesting the play(); command (and the Boolean flag) inside the if statement, you
ensure that those things happen only if the conditions set in the first line apply. What
are the conditions? In this case: If isPlaying is false (!isPlaying) ... then the rest will
happen. And if not? Then nothing (new) happens.

15. Save and test your movie. The Play and Stop buttons should work perfectly, no matter
how you click them.

Your complete script now should look like this:

var mySound:Sound;
var myChannel:SoundChannel;
var isPlaying:Boolean = false;

mySound = new Sound;
mySound.load(new URLRequest("audio/river.mp3"));

play btn.addEventListener (MouseEvent.CLICK, playSound);
stop btn.addEventListener (MouseEvent.CLICK, stopSound);
// pause_btn.addEventListener (MouseEvent.CLICK, runTracer);

function stopSound(myEvent:MouseEvent):void {
myChannel.stop();
isPlaying = false;
}
function playSound(myEvent:MouseEvent):void ({
if (!isPlaying) {
myChannel = mySound.play();
isPlaying = true;

Copyright © 2010, 2011 Mindy McAdams 5

3/ Adding script for a Pause button

You could operate most audio applications for journalism with only a Play and a Stop
button, but it’s nice for the users if you also provide a Pause button—even if it does require
some extra effort.

1. Save As: Rename your FLA to sound_controls_3.fla (so that you preserve the simpler
script for Play and Stop).

2. Write a new function below your other functions:

function pauseSound(myEvent:MouseEvent):void {
if (isPlaying) {
p = Math.floor (myChannel.position);
myChannel.stop();
isPlaying = false;

}

Note that a Pause button should work only if the audio is playing (if isPlaying is true).

3. Examine your new function and look for what you recognize. Everything in this
function has been covered earlier in this exercise—except the line that begins with p.
What is p? It is a new variable.

So the first step is to add another variable declaration after all the others:
var p:uint = 0;

The variable p is going to hold the position of the audio file. The position is
represented in milliseconds. For example, 29808.004535147393 is a reading of
SoundChannel.position at the end of a (supposedly) 30-second audio file.

The data type in this case tells Flash to expect an unsigned integer (uint), which is a
positive number. This is different from and preferable to using a number (Number). If
you need negative integers, use int instead. For more information, see:
http://help.adobe.com/en_US/FlashPlatform /reference/actionscript/3/Number.html

4. Now, about what this line actually does (it is in your new pauseSound function):
p = Math.floor(myChannel.position);
When you click the Pause button, this bit of script tells Flash to capture the position of

the SoundChannel object; then Flash takes the number and runs it through the
Math.floor method, which essentially rounds it down, or cuts off all the data after the

Copyright © 2010, 2011 Mindy McAdams 6

decimal point. See:

http://help.adobe.com/en_US/FlashPlatform /reference/actionscript/3/Math.html
This done, Flash sticks the result into the variable p, meaning that p now contains that
number—so Flash can use it when you click the Play button again.

5. Once you have p, what are you going to do with it? You need to add it to both the
playSound function and the stopSound function. The playSound function needs to use p
to know where to restart the audio file:

function playSound(myEvent:MouseEvent):void ({
if (!isPlaying) {
myChannel = mySound.play(p);
isPlaying = true;

}
The stopSound function needs to reset p to zero:

function stopSound(myEvent:MouseEvent):void ({
myChannel.stop();
p = 0;
isPlaying = false;

}

6. What's left to do? Well ... does your Pause button work yet? No, because it’s still
commented out. So, delete the two slash marks. You will also need to replace
runTracer with the name of your new function pauseSound.

pause btn.addEventListener (MouseEvent.CLICK, pauseSound);

7. Save and test your movie. Everything should work.

Your complete script now should look like this:

var mySound:Sound;

var myChannel:SoundChannel;
var isPlaying:Boolean = false;
var p:uint = 0;

mySound = new Sound;
mySound.load(new URLRequest("audio/river.mp3"));

play btn.addEventListener (MouseEvent.CLICK, playSound);

stop btn.addEventListener (MouseEvent.CLICK, stopSound);
pause btn.addEventListener (MouseEvent.CLICK, pauseSound);

Copyright © 2010, 2011 Mindy McAdams 7

function stopSound(myEvent:MouseEvent):void ({
myChannel.stop();
p = 0;
isPlaying = false;
}
function playSound(myEvent:MouseEvent):void {
if (!isPlaying) {
myChannel = mySound.play(p);
isPlaying = true;
}
}

function pauseSound(myEvent:MouseEvent):void ({
if (isPlaying) {
p = Math.floor (myChannel.position);
myChannel.stop();
isPlaying = false;

4/ Playing more than one audio file

A common audio application for journalism is to allow users to choose among several audio
files (for example, interviews with various people). Here you’ll build on the previous scripts
by adding two more MP3s and making sure only one audio file can play at a time.

1.

Copyright © 2010, 2011 Mindy McAdams

Open the FLA named sound_controls_4.fla and check the Library. Nothing new has
been added there. However, two more instances of the single Play button have been
dragged onto the Stage.

Unlock the buttons layer and check the instance name of each button. You'll see that
the three Play buttons are now named song1_btn, song2_btn, and song3_btn. The Stop
and Pause buttons have the same instance names as before.

Lock the buttons layer again. You're not going to change anything on the Stage.

Unlock the dynamic text layer and click the text field (under the words Now Playing).
In the Properties panel, notice that its instance name is title_txt.

Lock the dynamic text layer again.
Open the Actions panel. All the script is the same as before, with one exception: There

is a listener for song1_btn. (This replaced the listener for play_btn, which is gone.) So
you are starting with script you already understand.

7. You're going to modify the script. First you’ll write a new function:

function songl data(myEvent:MouseEvent):void ({
songfile = "audio/river.mp3";
songtitle = "The River";
playSound(null);

}

This function refers to two new variables that don’t exist yet, so you'll need to add
them (below the other variable declarations):

var songfile:String;
var songtitle:String;

The data type in this case (String) indicates text. For more information, see:
http://help.adobe.com/en_US/FlashPlatform /reference/actionscript/3/String.html

8. Your new function is doing something very cool—it is calling another function!
What does that mean? You already have a function named playSound; you used it in
the earlier exercises. Now your new function is going to set playSound into action. You
do not have to write the lines of playSound into the new function; it can just use what’s
already there in your script.

However, if we call a function (that is, set it into action) from inside another function,
it is not triggered by a MouseEvent. This requires a small change in the existing
playSound function:

function playSound(myEvent:Event):void ({

(Where it used to read MouseEvent, it now reads only Event.)

9. Nextyou will move two lines of script into the playSound function.
First cut these two lines:

mySound = new Sound;
mySound.load(new URLRequest("audio/river.mp3"));

Then paste them into the playSound function:
function playSound(myEvent:Event):void ({
mySound = new Sound;

mySound.load(new URLRequest("audio/river.mp3"));

Continued ...

Copyright © 2010, 2011 Mindy McAdams 9

10.

11.

12.

13.

if (!isPlaying) {
myChannel = mySound.play(p):;
isPlaying = true;

}

There’s one more change to make to the playSound function. What you need to ensure
is that the function can be used by all three Play buttons. But each Play button must
play a different song. How can that happen when the song file is specifically named in
the playSound function?

That’s where the variable songfile comes into use. By storing the folder and filename of
the MP3 file in this variable (see step 7, above), you made it possible to swap the hard-
coded folder/filename (audio/river.mp3) with the more flexible variable name:

mySound.load(new URLRequest(songfile));
Note that when you're using a variable name, there are NO quotation marks!
Save and test the movie. You will get an error when you click the Song 1 button:

TypekError: Error #2007: Parameter url must be non-null.
at flash.media::Sound/_load()
at flash.media::Sound/load()
at sound_controls_4_fla::MainTimeline/playSound()

You might associate this with the word null used in the song1_data function (step 7),
but that’s NOT the problem. The problem is in the listener for the Song 1 button:

songl btn.addEventListener (MouseEvent.CLICK, playSound);

You rewrote the playSound function in a way that now makes it dependent on the new
song1_data function—for that reason, when the listener calls the playSound function, it
does not work! What you need to do, instead, is call the new function:

songl btn.addEventListener (MouseEvent.CLICK, songl data);

Save and test the movie. The Song 1 button, the Stop button, and the Pause button
should all work correctly. (The Song 2 and Song 3 buttons don’t work yet.)

Now everything is in place for you to do some easy copying and pasting that will allow
the other two buttons to work! First, copy the whole song1_data function and paste it
twice. Change the function names to songZ2_data and song3_data, then add the MP3 file
and song title information:

Copyright © 2010, 2011 Mindy McAdams 10

14.

15.

16.

function song2 data(myEvent:MouseEvent):void ({

songfile = "audio/jerseygirl.mp3";
songtitle = "Jersey Girl";
playSound(null);

}

function song3 data(myEvent:MouseEvent):void ({
songfile = "audio/thunderroad.mp3";
songtitle = "Thunder Road";
playSound(null);

}

(You can use different MP3 files if you have them on hand.)
Finally, copy the song1_btn listener and paste it twice, then modify it:

songl btn.addEventListener (MouseEvent.CLICK, songl data);
song2 btn.addEventListener (MouseEvent.CLICK, song2 data);
song3 btn.addEventListener (MouseEvent.CLICK, song3 data);

Don’t forget to change BOTH the button name AND the function name to match!

What about the variable named songtitle? You have not used it yet. All that’s needed is
to add one line to the playSound function:

function playSound(myEvent:Event):void ({
mySound = new Sound;
mySound.load(new URLRequest(songfile));
title txt.text = songtitle;
if (!isPlaying) {
myChannel = mySound.play(p);
isPlaying = true;

}

This line of script speaks to the text attribute of the dynamic text field named
title_txt (see step 4, above). It tells that text field to contain whatever is contained in
the variable named songtitle. Each song data function writes a different title into that
variable (songtitle), so the text in the movie will always show the title of the song
that’s playing. (Another example of how useful variables can be!)

Save and test your movie. All works great if you simply play and stop, play and stop.
But using the Pause button, or clicking a different Song button without first clicking
Stop, shows you have problems in this script.

Copyright © 2010, 2011 Mindy McAdams 11

17.

This illustrates that whenever you add interactions or new functions to a script, it
is very likely that something will break. This is normal. It always takes patience and
perseverance to troubleshoot and debug a new script.

Debugging: The Play and Stop buttons work, but without clicking Stop first, another
Play button will not work properly. (Task 1: Make other songs stop playing when you
click a different Play button.) Pause works, but clearly it keeps the same position (p)
even after you have started playing a different song. (Task 2: Tell p to return to zero
when a new song is selected.)

In fact there’s nothing that needs to change in the pauseSound function.

Everything that’s not working happens because of the way the playSound function is
written. You need to change it around so that it takes into account whether another
song is already playing.

Well, think about that. Look at this part of the playSound function:

if (!isPlaying) {
myChannel = mySound.play(p);
isPlaying = true;

}

Right now, it only does something if the Boolean isPlaying is false. That worked when
you had only one audio file. Now you have many.

The Boolean isPlaying is true when any song is playing. So you can check and see if a
song is playing. This is what you want: If anything is playing right now, make it stop.
Then play the songfile starting at 0 (not at whatever value is stored in p). No need to
change the value of isPlaying to true—it was already true.

if (isPlaying) {
myChannel.stop();
myChannel = mySound.play(0);

That takes care of changing to a new song. What if no song is playing? Above, you have
If anything is playing ... Now you need what happens otherwise.

Otherwise (else), do the same thing your script was doing before. That is, if nothing is
playing right now, then play songfile starting at the value stored in p. Change the value
of isPlaying to true (because it had been false).

} else {
myChannel = mySound.play(p);
isPlaying = true;

Copyright © 2010, 2011 Mindy McAdams 12

Here is the complete newly rewritten playSound function:

function playSound(myEvent:Event):void ({
mySound = new Sound;
mySound.load(new URLRequest(songfile));
title txt.text = songtitle;
if (isPlaying) {
myChannel.stop();
myChannel = mySound.play(0);
} else {
myChannel = mySound.play(p);
isPlaying = true;

}

18. Save and test your movie. The three Song buttons work great now. But there’s a
problem if you pause one song and then play another. Why? Because when a song is
paused, it’s not playing. Look at the playSound function. What does it do when no song
is playing (else)?

This is how you troubleshoot and build a script. One thing at a time, with lots of
testing in between. Always click all of your buttons lots of times. Try to break things.
That is how you learn what needs to be fixed.

19. To fix this pausing problem, you're going to change the playSound function a little and
the pauseSound function a lot.

function playSound(myEvent:Event):void ({
mySound = new Sound;
mySound.load(new URLRequest(songfile));
title txt.text = songtitle;
if (isPlaying) {
myChannel.stop();
myChannel = mySound.play(0);
} else {
myChannel = mySound.play(0);
isPlaying = true;

}

Take the variable p out of the playSound function altogether, as shown above.

Copyright © 2010, 2011 Mindy McAdams 13

20. Change the pauseSound function as shown below:

function pauseSound(myEvent:MouseEvent):void ({
if (isPlaying) {
p = Math.floor (myChannel.position);
myChannel.stop();
isPlaying = false;
isPaused = true;
} else if (isPaused) {
myChannel = mySound.play(p):;
isPlaying true;
isPaused = false;

}

You are adding a new condition that causes the Pause button to act as a toggle. The
Song buttons no longer resume a paused track—because you removed the p from the
playSound function (step 19).

21. Add the new Boolean variable to the list of variables near the top of your script:
var isPaused:Boolean = false;

22. Save and test your movie. Try out the newly rescripted Pause button!

23. Your script has one last problem. If you click the Stop button before you have played
any song, Flash throws an error:

TypekError: Error #1009: Cannot access a property or method of a null object reference.
at sound_controls_4_fla::MainTimeline/stopSound()

That’s because nothing is playing
How would you ever discover that? Who would click the Stop button when nothing is
playing? You just don’t know—that’s what I meant about troubleshooting (step 18).

You have to try everything, even if it is illogical.

To fix the stopping problem, you need another if statement to force the stopSound
script to behave nicely (next page):

Copyright © 2010, 2011 Mindy McAdams 14

function stopSound(myEvent:MouseEvent):void ({
if (isPlaying) {
myChannel.stop();
p = 0;
isPlaying = false;
isPaused = false;

}

Note that I also sneaked in a new line to prevent the Stop button from messing up the
pauseSound function.

The script is now bulletproof. No matter what the user does, everything works, and nothing
ever breaks.

Your complete script now should look like this:

var mySound:Sound;

var myChannel:SoundChannel;
var isPlaying:Boolean = false;
var isPaused:Boolean = false;
var p:uint = 0;

var songfile:String;

var songtitle:String;

songl btn.addEventListener (MouseEvent.CLICK, songl data);
song2 btn.addEventListener (MouseEvent.CLICK, song2 data);
song3 btn.addEventListener (MouseEvent.CLICK, song3 data);
stop btn.addEventListener (MouseEvent.CLICK, stopSound);

pause btn.addEventListener (MouseEvent.CLICK, pauseSound);

function songl data(myEvent:MouseEvent):void ({

songfile = "audio/river.mp3";
songtitle = "The River";
playSound(null);

}

function song2 data(myEvent:MouseEvent):void ({
songfile = "audio/jerseygirl.mp3";
songtitle = "Jersey Girl";
playSound(null);

}

Continued ...

Copyright © 2010, 2011 Mindy McAdams 15

function song3 data(myEvent:MouseEvent):void ({
songfile = "audio/thunderroad.mp3";
songtitle = "Thunder Road";
playSound(null);
}
function stopSound(myEvent:MouseEvent):void ({
if (isPlaying) {
myChannel.stop();
p =0;
isPlaying = false;
isPaused = false;
}
}
function playSound(myEvent:Event):void ({
mySound = new Sound;
mySound.load(new URLRequest(songfile));
title txt.text = songtitle;
if (isPlaying) {
myChannel.stop();
myChannel = mySound.play(0);
} else {
myChannel = mySound.play(0);
isPlaying = true;

}
}
function pauseSound(myEvent:MouseEvent):void ({
if (isPlaying) {
p = Math.floor (myChannel.position);
myChannel.stop();
isPlaying = false;
isPaused = true;
} else if (isPaused) {
myChannel = mySound.play(p);
isPlaying = true;
isPaused = false;

This probably seems like a lot of work to do, and it is. However, if you have never done any
programming or scripting before, you have now experienced a pretty normal workflow of

testing and fixing, testing and fixing—one function at a time.

If you review what you've done, you'll see that the basic Play and Stop for a single audio file

(pages 1-5) were pretty straightforward. If you do not need to add more complexity, then
just don’t do it!

Copyright © 2010, 2011 Mindy McAdams

16

