Exercise: XML and Flash
ActionScript 3.0 and Adobe Flash Professional

We will start with a collection of assets that are very typical: text and images.

= The images are all JPG files. They are in a folder named images. They have
already been edited in Photoshop, so they are all consistently sized.

* The text is an MS Word document. It includes information about each one of
12 items, including the filename of an image, a book title, and an ISBN (a
universally used unique ID number for published books).

Let’s get the most annoying part out of the way first. It is tedious but very useful.

Data (XML) conversion sequence

We begin with a normal MS Word file with different kinds of info on separate lines.

1. Open the MS Word file that includes all the information about all the books
(books.docx).!

2. Select all the text in the MS Word file.

3. Convert the text to a table. (If you don’t know how, look in Word Help. It is
clearly explained there.) When prompted, change the NUMBER OF COLUMNS
to “9.” Why? Because you have eight pieces of information about each book,
plus a blank line after each set. (In database terms, we would say we have
nine fields in each record.) The default for “Separate text at” should be
paragraphs; that is correct (each line is a paragraph in Word). Click OK.

4. Select the final column in the table. All of the cells are empty (these were the

blank lines). Delete it (select it, then right-click: Delete Columns).

There should be no blank cells in this table. Check this.

Select the entire table in Word. Copy it.

Open MS Excel. Click on the top left cell in the grid to select it. Paste.

Now we need to do a little data cleaning.? The reason: Many ISBNs start with

zero. If we had pasted normal ISBNs into Excel, it would have eliminated all

those leading zeros, and then you would have to type them all back in. No one
would do that. So, the ISBNs in the document all had an apostrophe added as
the first character; this is a clever trick to make Excel accept them as text.

However, now we must delete the apostrophes. This is a cool Excel

procedure for a common data-cleaning operation.

NG

1 Word is used (instead of a plain-text editor) because it’s easy to make proper typographic
quotation marks, em-dashes, accented characters, etc., in Word. Plus, everyone can understand Word.
2 All the steps under No. 8 are specific to the ISBNs, which are numerals that need to be treated as
text. If you did not have this kind of data in the dataset, you could go directly to No. 9 to continue with
the XML conversion. Data often need some kind of cleaning to work properly in Web applications.

Copyright © 2011 Mindy McAdams / Free for use by students 1

Insert a new column in Excel between columns A and B. The new one
will now be B.

Click the cell in column B, row 2, to select it.

Paste the following text in cell B2, and then press Return or Enter.

=RIGHT (A2,LEN(A2)-1)

In the second cell in column B, you should now see the same number
from column A, but without the apostrophe.? (If that is not what you
see, you made an error.)

Now you need to apply the same formula to all the cells in column B.
This is a common task in Excel. Hover on the lower right corner of the
cell B2 until you see a plain black plus sign, as shown below:

<> A B | C D
1 ISBN | Title AuthorLast
‘0141439513 Pride and Austen
! 0141439513 | Prejudice
‘1844083721 Death Comes |Cather
for the
3 Archbishop
‘0061120065 Their Eyes Hurston
Were
Watching God
4
‘0679405828 Jane Evyre Bronté

Then hold and drag down to include the last cell in column B:

8 Heights

‘0307278441 The Bluest Morrison
9 Eye

‘0374530637 Wise Blood |O’Connor
10

‘0142437808 Ethan Frome |Wharton
11

‘0061120081 To Kill a Lee
12 Mockingbird

‘0060915544 The Bean Kingsolver
13 UliTrees
14

3 The formula you entered means: Starting from the RIGHT, take the contents in the cell A2, find the
length of the contents (number of characters), and take the last one away (-1) from the left side. Show
the result here in B2. LEN performs the length operation.

Copyright © 2011 Mindy McAdams / Free for use by students 2

10.
11.
12.

13.

14.
15.

16.

When you release the mouse, all the modified [ISBNs will be in column
B (without the apostrophes).

0393978893 Heights

‘0307278441 The Bluest Morrison
0307278441 Eye

‘0374530637 Wise Blood |O’Connor
0374530637

‘0142437808 Ethan Frome |Wharton
0142437808

‘0061120081 ToKilla Lee
0061120081 Mockingbird

‘0060915544 The Bean Kingsolver
0060915544 Trees

f. Copy the column heading from cell A1 and paste it into cell B1.
Drag to select all the cells from B1 down to 113 (all the cells except the first
column, where you have the apostrophe-ISBNs, which you do not want now).
Copy.

Open the Web page at:

http://www.shancarter.com/data_converter/

Paste into the big box labeled “Input CSV or tab-delimited data.”

Copy everything in the lower box, labeled “Output as [XML - Nodes].”
Paste the XML text into Dreamweaver, or into a good plain-text editor.*
Now we need to perform two find-and-replace operations to replace the
generic “row” and “rows” written for us by the Mr. Data Converter
application:

a. Inthe XML file, replace all instances of “rows” with “booklist.” Mr.

Data Converter wrapped the whole list in the tag <rows>
b. In the XML file, replace all instances of “row” with “book.” Mr. Data

Converter wrapped each data record in the tag <row> —that
absolutely has to be <book> for our ActionScript to work in this
exercise.

Save the document with filename books.xml (note that the file extension

MUST be .xml). This is your XML file. The ActionScript in this exercise will

look for this exact filename.

4 Dreamweaver works great for this. If you use a decent text editor, such as Notepad++ (Win) or
TextWrangler (Mac), these also do a good job. DO NOT USE standard MS Notepad (Win) or TextEdit
(Mac) or MS Word for this. They will mess up the XML.

Copyright © 2011 Mindy McAdams / Free for use by students

Check your XML file to see whether the first lines look like this:

<?xml version="1.0" encoding="UTF-8"7>
<bookList>
<book>
<ISBN>0141439513</ISBN>
<Title>Pride and Prejudice</Title>
<AuthorLast>Austen</AuthorLast>

If not, edit the file to look like the lines shown above. (It's okay if the indents are
smaller.)

The final lines in your XML document should look like this:

<PubYear>1988</PubYear>
<Genre>Novel</Genre>
<Image>images/beantrees.jpg</Image>
</book>
</bookList>

If you see unnecessary lines there (above the closing tag </bookL1istData>), delete
them.

What did you just do?

Naturally this seems like a lot of work to do for 12 little data records. Please
understand that normally you would be doing this for a bigger dataset. Think of U.S.
Census data as an example. This is how you format data so that people can view (for
example) 5,000 pop-up boxes on an interactive map.

You can use this same procedure to create an XML file of hundreds or thousands of
data records.> Sometimes you might get an XML file that’s already set up for you—
but now you know how to make your own.

Examine any single record, and you’ll see the eight data fields you started with:

<book>
<ISBN>0199535574</1ISBN >
<Title>Sense and Sensibility</Title >
<AuthorLast>Austen</AuthorLast >
<AuthorFirst>Jane</AuthorFirst >
<Publisher>0xford</Publisher >
<PubYear>1811</PubYear >
<Genre>Romance</Genre >
<Image>images/sense.jpg</Image >
</book>

5 At a media organization, you would probably have an in-house converter application, so you would
not need to use the one at http://www.shancarter.com/data_converter/

Copyright © 2011 Mindy McAdams / Free for use by students 4

= Each record is enclosed by the same two tags: <book> and </book>

= The full dataset is enclosed by two tags: <bookList> and </bookList> —
XML requires enclosing tags such as these.

= The XML tags work like HTML: Opening and closing tags are required for
each data field and each data record.

Tags all have names that you create. They can be uppercase or lowercase, but they
have to match (like HTML tags, like CSS). No spaces, and no punctuation. If you
wanted to make XML for episodes of a TV show, the tags might look like this:

<episode>

<season>2</season>

<episodeNum>5</episodeNum>

<origAirDate>10/15/2009</origAirDate>

<title>Dream Logic</title>

<summary>The Fringe team travels cross-country to Seattle after
learning of a mysterious incident involving a man who attacked his boss
because he believed he was an evil ram-horned creature. As these
puzzling occurrences continue, the team tirelessly explores strange and
creepy links to dreams. In pursuit of additional information, Agent
Broyles has a disconcerting meeting with enigmatic Massive Dynamic
executive Nina Sharp that Teads the investigation in an unthinkable
direction.</summary>
</episode>

You may have as many data fields as needed in a data record. As you see above, a
data field may contain a large amount of text.

Next: Using the XML in a multi-part package.

l)(-unhv(.l’»mu for Death Comes for

the \I'Ch|l1\hu]1

\‘\'n_l.l (”"“‘,"“7‘ the Al‘ChblShOp

Willa Cather
Novel, 1927
Publisher: Virago

Browse My Library < }

Copyright © 2011 Mindy McAdams / Free for use by students 5

Designing a screen layout with dynamic text fields

To create a screen or slide that will work for all the data and all the books, you can
use the design above as a general guide (feel free to change the layout).

The widest book cover image is 206 pixels (width). All covers are 300 pixels high.
The buttons are provided for you in the books.fla file.
Create a layout in Flash using:

1. A plain rectangle shape with the dimensions of a book cover.

2. Four separate text boxes for title, author, genre and year, and publisher. Type
and style text in the fields, and make them look good. Make the text in these
four text fields Classic - Dynamic - Device Fonts® (Properties panel).

3. Atextbox that contains only the word Publisher: (This and any other text
apart from the four dynamic fields should be Classic - Static — Anti-alias for
readability. Make sure the text is NOT selectable.)

4. The Amazon button (provided).

Next and Previous buttons (one provided; use it twice—just flip it).

U

Naming text fields for data in Flash
Since I have already written the script for this, you will need to use the exact
instance names used in that script. Those for the text fields are:

title_txt
author_txt
bookinfo_txt
publisher_txt

You have already created four dynamic text fields (step 2 on the previous page)—
now give the appropriate instance name to each one, using the list above.

Next, give these instance names to the three buttons:
amazon_btn
next_btn

back btn

You are going to see all of these seven instance names in the ActionScript.

6 Device Fonts are not bulletproof and should not be used for most Web applications. However, we
want to avoid the font-embedding tasks today for this exercise, so this is a shortcut for class only.

Copyright © 2011 Mindy McAdams / Free for use by students 6

Note that everything you did here on page 6 is simple Flash layout and design.
Nothing special (except styling the fonts). Nothing difficult.

ActionScript 3 for loading XML in Flash

First you need to drag all your content into frame 10, leaving frames 1-9 empty as
shown below:

TIMELINE | OUTPUT | COMPILER ERRORS | MOTIONEDITOR | |

s Q [d! 5 10 15
‘w) D o 0o
4l buttons « « O [le!
al text fields « « W [Ole!
a bg « « O, (e

Now you’ll be putting ActionScript on frame 1 (in the “actions” layer, of course!).
Here is the first bunch:

stopQ);

var myXML:XML;

var xmlLoader:URLLoader = new URLLoader();
var itemNumber:uint = 0;

var myLoader:Loader = new Loader();

myLoader.x = 10;
myLoader.y = 10;
Explanation

The first four lines are variables. You are setting them up, or initializing them. Flash
will use these later.

* myXML is for the XML data that will be loaded.

= xmlLoader is for the URL (or filename) of the XML file.

= itemNumber is for a data record number. When Flash reads your XML file, it
will associate each data record with a unique number, starting with 0.

* myLoader is for an image loaded from an external file. Last week you used a
Loader object for loaded SWF files. This is the same, only this time the filename
for each image will come from the XML.

The next two lines position the loader, which is your image container. Get the X and

Y coordinates from the rectangle you placed on the Stage in your layout and change
them accordingly.

Copyright © 2011 Mindy McAdams / Free for use by students

Now let’s do some work. Write the next line:
xmlLoader.load(new URLRequest("books.xm1"));

You are using one of you variables (xmlLoader) to get the XML file. That file must
be in the same folder with your FLA and SWF. (Do not keep files on the Desktop!)

The following line is an EventListener that will “hear” when the whole XML file has
finished loading. This is really important, because nothing works if this file does not
load.

xmlLoader.addEventListener(Event.COMPLETE, handleMyData) ;
You can see that the listener is going to need a function (as usual!).

function handleMyData(e:Event):void {
myXML = new XML(xmlLoader.data);
playQ;

}

That function says:

= Get the variable myXML and stick into it the data (from the XML file) that
came into the loader named xmlLoader.
= After that's done, play the timeline.

When the timeline plays, it's going to come to a stop on your final frame. Then
everyone will see your lovely layout with the book cover and the text fields.

An important note

Everything you have done in the ActionScript up to this point is pretty much THE
SAME every time you load any XML file for any reason. The name of the XML file
(books.xml) will be different, no doubt. In future projects, you may or may not have
images—or SWFs, or videos—specified in the XML file. If you do, you will need at
least one loader. If you don’t, then you will not need myLoader, and you will not
need to setits X and Y.

You can use all the same variable names and function names you see here. I always
use the same ones—that way, I just copy and paste all this code and the only thing I

need to change is the name of the XML file.

Your code on frame 1 up to this point is:

Copyright © 2011 Mindy McAdams / Free for use by students

stop();

var myXML:XML;

var xmlLoader:URLLoader = new URLLoader();
var itemNumber:uint = 0;

var myLoader:Loader = new Loader();

myLoader.x
myLoader.y

10; // use your own X and Y numbers
10;

xmlLoader.load(new URLRequest("books.xm1"));
xmlLoader.addEventListener(Event.COMPLETE, handleMyData) ;

function handleMyData(e:Event) :void {
myXML = new XML(xmlLoader.data);
playQ;

}

Note that at this point, the XML data is already in your SWF. It is waiting to be used.

The function that does it all

It's nice to have one stand-alone function that puts all the XML data where you want
it to appear. Then each time you want the data from a particular data record in the
XML (in this case, the data for one book), you just run this function. It can run from a
button or from a frame.

function makeSlide():void {
myLoader.load(new
URLRequest (myXML.book[itemNumber].Image));
addChild(myLoader);
title_txt.text = myXML.book[itemNumber].Title;
author_txt.text = myXML.book[itemNumber].AuthorFirst +
" " + myXML.book[itemNumber].AuthorLast;
bookinfo_txt.text = myXML.book[itemNumber].Genre + ",
" + myXML.book[itemNumber].PubYear;
publisher_txt.text = myXML.book[itemNumber].Publisher;
}

Those lines in blue are not new lines—they are part of the previous line, so DO NOT
press return at the wrong place!

Copyright © 2011 Mindy McAdams / Free for use by students 9

Now look at what each line does so you understand it:

myLoader.load(new
URLRequest (myXML.book[itemNumber].Image));

The image associated with this data record is going to go into myLoader. It is
a URLRequest because the image is a file outside the SWF (just like the loaded
SWFs last week). Let’s also take a look at the meaning of

myXML . book [1temNumber] .Image —because this is a pattern you are going to
see again in four lines just below this.

myXML refers to the whole loaded XML file.

book is the tag inside the XML file that wraps around one data record (the
data for one of the books).

[itemNumber] is a variable you initiated back on page 7. It is still equal to 0.
That would bring in the first book in your XML. If you wanted the sixth
book, then itemNumber would need to be equal to 5. (You'll get more
information about itemNumber below.)

Image, like book, comes staright out of your XML. This loader is going to get
the filename that appears between the <Image> tags in the XML file.
Note that the uppercase I is essential—it must match the XML file.

addChild(myLoader);

This line makes the loaded image visible. It is required. Why (you may ask) is
the word “child” used? Let’s keep it simple and simply say that in object-
oriented programming, objects have relationships, and one way these
relationships are configured is parent-child. Objects on the Stage are
considered “children” of something else. If we do not include
addChild(myLoader) when necessary, then the loaded content will never
become visible.

title_txt.text = myXML.book[itemNumber].Title;

This is how text is written into your dynamic text fields. The information
between the <Tit1e> tags in the XML file is going to be written into your
title_txt field on the Stage.

author_txt.text = myXML.book[itemNumber].AuthorFirst +
" " + myXML.book[itemNumber].AuthorLast;

The information between the <AuthorFirst> and <AuthorLast> tags in the
XML file is going to be written into your author._txt field on the Stage. The

part + + adds a space between the two!

Copyright © 2011 Mindy McAdams / Free for use by students 10

bookinfo_txt.text = myXML.book[itemNumber].Genre + ",
" + myXML.book[itemNumber].PubYear;

The information between the <Genre> and <PubYear> tags in the XML file is
going to be written into your bookinfo_txt field on the Stage.

The part + ", + adds a comma and a space between the two.
publisher_txt.text = myXML.book[itemNumber].Publisher;

The information between the <Pub1isher> tags in the XML file is going to be
written into your publisher._txt field on the Stage.

The Next and Back button functions

In this example, we will just step through every record in the XML file. That means
we want the Next button to show next record, show next record, show next record ...
until we reach the end of the list.

Likewise, we want the Back button to show the previous record, and the one
previous to that, each time we click it.

Here is where itemNumber steps up to do its job. In computer code, every set of
data objects is numbered, starting with 0. The second is 1, the third is 2, and so on.
So to say, “Show me the next one,” we tell the system to add 1 to the record number.
To say, “Show me the previous one,” we subtract 1.

And to make it nice and bulletproof, we have to test to see if we have reached the
end yet (in either direction). Otherwise, Flash will throw an error.

function goNext(e:MouseEvent):void {
itemNumber++; // add 1
back_btn.visible = true;
if (itemNumber == (myXML.children().length() - 1)) {
next_btn.visible = false;
}

makeS1lide();
}

Above is the function for the Next button. We’ll go through it line by line.
itemNumber++;

This is the same as saying: “Now make itemNumber equal to itemNumber
plus 1.” We are increasing the value of itemNumber by +1.

Copyright © 2011 Mindy McAdams / Free for use by students 11

back_btn.visible = true;

We are going to ensure that the Back button is invisible when there are no
previous records. However, since we just increased itemNumber by +1, then
there must be a previous item, and so the Back button needs to be seen!

if (itemNumber == (myXML.children().length() - 1)) {

}

next_btn.visible = false;

This is a very common kind programming statement called an if-then. The
first line sets up a condition: If this is true ... The second line provides a result
or a consequence: ... then do this. If the condition defined in the first line is
not true, then the second line is ignored. The handy attribute

myXML .children() .Tength() tells us how many records are in the XML file.
Then we have to -1 because (as you'll recall), the first one is numbered 0. So
we are saying: If the itemNumber right now (after the +1 above) is equivalent
to (==) the total number of records minus one, then make the Next button
not visible. Get it? Because in that case, there will be no next record.

makeS1ide();

This calls the function you wrote earlier—the one that does all the work of
writing the text and showing the image.

The script for the Back button is parallel to the script above:

function goBack(e:MouseEvent):void {

itemNumber--; // subtract 1

next_btn.visible = true;

if (itemNumber == 0) {
back_btn.visible = false;

}
makeS1ide();
}
itemNumber--;

This is the same as saying: “Now make itemNumber equal to itemNumber
minus 1.” We are decreasing the value of itemNumber by -1.

Copyright © 2011 Mindy McAdams / Free for use by students 12

next_btn.visible = true;

We are going to ensure that the Next button is invisible when there are no
more records left to view. However, since we just decreased itemNumber by
-1, then there must be a next item, and so the Next button needs to be seen!

if (itemNumber == 0) {
back_btn.visible = false;
}

Here’s another if-then statement. The first line sets up a condition: If this is
true ... The second line provides a result or a consequence: ... then do this. If
the condition defined in the first line is not true, then the second line is
ignored. Here we are saying: If the itemNumber right now (after the -1
above) is equivalent to (==) zero, then make the Back button not visible.
There will be no record to go back to.

makeS1lide();

This calls the function you wrote earlier—the one that does all the work of
writing the text and showing the image.

Make sure you understand, now, what the role of itemNumber is.

Variables and a button for Amazon links

When I was making this tutorial, | wanted the XML data to include some kind of
dynamic links to external Web pages. Since I copied the book covers from Amazon, I
thought it only fair to use their pages for the links. Unfortunately they have a really
long and unwieldy search URL. Buried in the middle of that URL is the book’s ISBN—
a universally used unique ID number.

So I did not need to include the complete URL in the XML. Most of it does not
change—only the ISBN changes. So all that is needed in the XML is the ISBN.

However, here in the script, it's necessary to write out the complete URL. So I broke
it into two parts: The part that precedes the ISBN, and the part that comes after.
These two parts are written into two variables:

var amazonl:String =
"http://www.amazon.com/gp/search/ref=sr_adv_b/?search-
alias=stripbooks&unfiltered=1&field-keywords=&field-
author=&field-title=&field-isbn=";

Copyright © 2011 Mindy McAdams / Free for use by students 13

var amazon2:String = "&field-publisher=&node=&field-
p_n_condition-type=&field-feature_browse-bin=&field-
binding_browse-bin=&field-subject=&field-Tanguage=&field-
dateop=&field-datemod=&field-
dateyear=&sort=relevanceexprank&Adv-Srch-Books-
Submit.x=15&Adv-Srch-Books-Submit.y=13";

These must be written with NO HARD RETURNS.
And then, a third variable is going to hold those two plus the ISBN:
var amazonURL:String;

What is String? It is a data type meaning the variable holds text (as opposed to a
number or an integer).

All three of the variables come together with the ISBN (from the XML file) in this
function, which will be called by the Amazon button:

function goAmazon(e:MouseEvent):void {
amazonURL = amazonl + myXML.book[itemNumber].ISBN +
amazon?2;
var myRequest:URLRequest = new URLRequest(amazonURL) ;
navigateToURL(myRequest, "_blank");
}

The line in blue is not a new line—it is part of the previous line, so DO NOT press
return at the wrong place!

Here’s the walk-through for that function:

amazonURL = amazonl + myXML.book[itemNumber].ISBN +
amazon?2;

The value of the variable amazonURL will be: (1) the value of the variable
amazonl, plus (2) the ISBN indicated by the current itemNumber, plus (3) the
value of the variable amazon2. All three get strung together into one very, very
long string!

var myRequest:URLRequest = new URLRequest(amazonURL);
Yet another variable declaration: This one is named myRequest. It is going to

contain the current value of amazonURL—which was just created by the line
above this one.

Copyright © 2011 Mindy McAdams / Free for use by students 14

navigateToURL (myRequest, "_blank");

This is the normal way (in AS3) to open a new Web page in a new window.
Because the variable myRequest holds the same giant string of text as
amazonURL, that tells the browser which Web page to open.

We have come to the end of the frame 1 script! If you would like to copy and paste it,
you can get it from the file as3_to_add.txt.

The script on frame 10
Add these lines to frame 10. This should all look quite familiar to you:

stopQ);

amazon_btn.addEventListener (MouseEvent.CLICK, goAmazon);
next_btn.addEventListener(MouseEvent.CLICK, goNext);
back_btn.addEventListener(MouseEvent.CLICK, goBack);

back_btn.visible = false;
makeS1ide();

First, you have three button listeners. The buttons are not present until frame 10, so
of course the listeners must be there.

You already wrote all three functions on frame 1. It is good to keep the functions on
frame 1, even if they will not be used until later in the timeline.

goAmazon
goNext
goBack

Next, we tell the Back button to be not visible. Why is this necessary? Because at the
top of frame 1, you set the value of itemNumber to 0. There is nothing to go back to
(vet). Therefore, the Back button should not be clicked. If you don’t want people to
click a button, then make its visible attribute false—to hide it.

Finally, we call the function that does all the work: makeS1ide ()

This function will run each time Next or Back is clicked. However, you do not want
people staring at a blank screen when they come to frame 10! That is why we run
the function once from the frame itself—to populate the text fields and myLoader.
(“Populate” is programmer’s jargon.) If you want to see the difference, just comment
out the line that calls the function by putting two slashes in front of it:

Copyright © 2011 Mindy McAdams / Free for use by students 15

// makeSlide();

Save and test the movie. Everything should work beautifully (unless you have
typos!).
Don’t forget to go back and delete the two slashes you just added on frame 10. It

works much more nicely that way.

The same XML data in a different design

Building on what you have just done in this exercise, you can examine the same XML
data loaded into a different SWF, with the access to each book provided in a more
user-friendly fashion.

View the second example here:

http://flashjournalism.com/CS4examples/XML/XMLexample.html

Then open the FLA (exampleZ.fla) and check out the movie clip (in the Library)
named Panel. The text fields should look familiar to you. This FLA is fully functional
and fully coded.

What [would like you to recognize are two key similarities.
1. The way to load the XML file is the same (frame 1, Main Timeline):
var myXML:XML;
var xmlLoader:URLLoader = new URLLoader();
var itemNumber:uint = O;

xmlLoader.load(new URLRequest("books.xml1"));

xmlLoader.addEventListener(Event.COMPLETE,
handleMyData) ;

function handleMyData(e:Event):void {
myXML = new XML(xmlLoader.data);

play(Q;
3

The ONLY thing you would need to change in a new project is the filename of
the XML file.

Copyright © 2011 Mindy McAdams / Free for use by students 16

2. The way to use the individual items in the XML file is the same. The fields and
the loader are down inside a movie clip (Panel) which is animated inside
another movie clip (Panel Animation), so everything needs to have two
instance names appended on the front: panelani_mc.panel_mc. Strip those
away and you see the same script as before (frame 1, Main Timeline):

function addContent(e:Event):void {
panelani_mc.panel_mc.mylLoader.load(new =
URLRequest (myXML.book[itemNumber].Image));
panelani_mc.panel_mc.addChild(panelani_mc. =
panel_mc.mylLoader);
panelani_mc.panel_mc.title_txt.text = =
myXML .book [1temNumber].Title;
panelani_mc.panel_mc.author_txt.text = =
myXML.book [itemNumber] .AuthorFirst + " " + =
myXML . book [itemNumber] .AuthorLast;
panelani_mc.panel_mc.bookinfo_txt.text = =
myXML.book[itemNumber] .Genre + ", " + =
myXML . book [i1temNumber] .PubYear;
panelani_mc.panel_mc.publisher_txt.text = =
myXML . book [1temNumber] .Publisher;
amazonURL = amazonl + myXML.book[itemNumber]. =
ISBN + amazon2;

}

The symbol = is standard in books about programming; it means that the line of
script continues without a hard return. You must not try to copy and paste the code
above. It will not work because of the = symbol.

The big difference between these two examples is the way the individual data
records from the XML are used. In the first example, the Next and Back buttons just
stepped through the entire list. A user could not choose and could not skip around.
In the second example, a grid of 12 buttons lets a user select any book, in any order.

That choice requires us to take some unique ID from the data record for each book
and use it to associate the button with the data record. That is what enables us to
view any record in any order. The ISBN is perfect for this because no two books in
the world have the same ISBN.

The switch statement in the openPanel() function is very useful for a set of many
buttons like this one. You can see how it frees you from writing 12 different

functions. (However, you do still need 12 different listeners.)

The openPanel() function performs the following four tasks:

Copyright © 2011 Mindy McAdams / Free for use by students 17

1. Inthe switch statement, case tests each possible case that might be true.
Since 12 buttons use this function, there are 12 cases.

(e.currentTarget.name) refersto whatever called this function
(e.currentTarget) and gets its instance name. That means we get the
button’s instance name. Sweet!

If a case is true, the value of the variable isbn becomes whichever one is
written there under case, and then we quit from the switch statement
(break;) . If the case is not true, the script continues to the next case. At the
end of this process, we have the ISBN for the book button that was clicked.

2. The forloop is very, very common in all programming languages. It allows us
to loop through all the items in a list of some kind and do stuff to each one of
them.

for(var i=0; i< (myXML.children().length()); i++) {
if (myXML.book[i].ISBN == isbn) {
itemNumber = 1;
break;

}

A for loop always starts with three items: a beginning point, a limit or ending
point, and an increment (+1) or decrement (-1). In this example, the
beginning point is 0 (1=0); the limit is the number of items (books) in our
XML file (this comes from myXML.children().length() —that tells Flash how
many items are in the whole list); the increment is accomplished by i++ (you
can look up more details about for loops online). A for loop typically uses i
or j as its variable. With var inside the loop statement, the variable name
cannot be used outside this function (it will not work).

So what does this for loop do for each one of the items in our XML? It looks
at each one (an item is enclosed by the tags <book> and </book> as I'm sure
you will recall) and asks: “Does the ISBN number in this book data record
match the value of the variable isbn, which we just got from the switch
statement?” As soon as it does match, the for loop quits (break;) and we
move on to the next thing. Oh, and the value of i is placed into the variable
itemNumber, which is crucial to filling in our text fields (i temNumber = 1;).
That means Flash now knows which record we want from the XML. It is some
number between 0 and 11—because i started at a value of 0 and ended at a
value of 1 less than 12.

Copyright © 2011 Mindy McAdams / Free for use by students 18

Note: myXML.children().length() is equal to 12 for our XML.

3. The third step in the openPanel() function is to call another function:
addContent(null);
We discussed what that function does in detail on page 17 above.

4. The final step is—now that the content is all in place in the text fields and the
loader, thanks to the addContent() function—play the movie clip Panel
Animation. That will make the filled panel fade into view, just by playing it.

panelani_mc.play(Q;

The real-world version

It's actually a bit odd to manually create these buttons and place them on the Stage,
as I have done for this example. I chose to do this because I hoped it would make it
easier to understand how we make the jump from simply stepping through the XML
list to actually using the data in a random way, choosing any item in any order.

In a real-world application, the buttons would probably be created via ActionScript,
or at least the thumbnail image would be inserted into each button via ActionScript,
and they would be positioned on the Stage or in a scrolling menu symbol by
ActionScript as well. Thus everything would be automated and handled by
ActionScript, and the XML file could be totally changed at any time without
requiring ANY changes to the SWF or the FLA.

That’s the beauty of external data.

You can imagine a weekly best-sellers list. Each week, the top 12 books are different.
But all you have to change is the XML file. The SWF stays untouched on the Web
server, and yet each week the SWF shows 12 different books and all their associated
data.

The buttons would be populated from the XML file with two things: A thumbnail
image, and the record number of the associated book data record. This would be
accomplished with a for loop. It would say, in essence: “For each item, from item 0
to item 11, get the filename of the thumbnail. Place that thumbnail image into a
loader inside the specified button symbol. Then place the current record number
into a variable in that button symbol. Then (now that all the necessary information
is inside the button), place an instance of that button on the Stage at a particular X
and Y.” When any button was clicked, we would not need to find the ISBN; we would
already know the record number to use.

Copyright © 2011 Mindy McAdams / Free for use by students 19

